If it's not what You are looking for type in the equation solver your own equation and let us solve it.
z^2+3z-12=0
a = 1; b = 3; c = -12;
Δ = b2-4ac
Δ = 32-4·1·(-12)
Δ = 57
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{57}}{2*1}=\frac{-3-\sqrt{57}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{57}}{2*1}=\frac{-3+\sqrt{57}}{2} $
| 3=3x+5(2x-15) | | h^2+7h+15=5 | | 8x-10=4x=30 | | (x+20)(6x-180)=30000 | | 3x+2(6x+6)=-153 | | -3x-2(-6x-10)=-61 | | 9x-9x=3 | | 5/9m+8+2/9m=22 | | -2x-3(-5x-14)=-36 | | 4.5x1.333-1=8 | | 1/2(12f+5)=0 | | -21+f=-15 | | 12x+25+102+168=360 | | (3y-8)(4y-1)=0 | | -180=-4x-6(5x-4) | | 1+4n=16n | | 2(x+3)+3(x-1)=-15 | | -18-9q=-8q | | d/5-2=2 | | -h-15h=-16 | | 6u-32=92 | | 14t-8=6t1 | | 18h-10h=16 | | 10=22-4d | | |2x-4|=|3x-9| | | -2+-3/7b=4 | | 2a-7=29 | | 8a+4a=-12 | | X=2x-6=14 | | 8-6x-5-9x=-6 | | 9-7x-7-5x=-5 | | 400=2x-10 |